Participatory Action Research in the Development of Higher Education with Digital Media


Abstract views: 42 / PDF downloads: 31

Authors

DOI:

https://doi.org/10.51724/arise.55

Keywords:

science education, educational/instructional technologies, digital media, ICT, instructional design, TPACK, action research

Abstract

The digitalisation of higher education has versatile potential for students and especially for pre-service teachers. Unfortunately, this potential is insufficiently used in higher education institutions. This article displays a project focusing on developing university teacher education with digital media. For this purpose, the applied model of Participatory Action Research for Higher Education will be illustrated, reflected, and discussed to share the findings and experiences of the process and facilitate future development projects. Furthermore, conditions for success, challenges, and recommendations based on this project will be provided.

References

Al-Samarraie, H., Shamsuddin, A., & Alzahrani, A. I. (2019). A flipped classroom model in higher education: a review of the evidence across disciplines. Educational Technology Research and Development, 68, 1017–1051.

Baker, T., Smith, L., & Anissa, N. (2019). Educ-AI-tion Rebooted? Exploring the Future of Artificial Intelligence in Schools and Colleges. https://www.nesta.org.uk/report/education-rebooted/

Bandura, A. (1977). Social learning theory. Englewood Cliffs: Prentice Hall.

Bergmann, J., & Sams, A. (2012). Flip your classroom: Reach every student in every class every day. Washington, DC: International Society for Technology in Education.

Biehl, A., & Besa, K.-S. (2021). Zusammenhänge zwischen der Mediennutzung Studierender und ihrer Dozierenden an deutschen Hochschulen: Eine explorative Studie [Connection between media use of students and teachers at German higher education school: An explorative study]. MedienPädagogik: Zeitschrift für Theorie und Praxis der Medienbildung, 40(CoViD-19), 77–96.

Brooke, J. (2016). SUS: a “quick and dirty” usability scale. In P. W. Jordan, B. Thomas, B. A. Weerdmeester, & A. L. McClelland (Eds.), Usability evaluation in industry (pp. 189–194). London: Taylor and Francis.

Burmeister, M., & Eilks, I. (2013). Using participatory action research to develop a course module on education for sustainable development in pre-service chemistry teacher education. Centre for Educational Policy Studies Journal, 3(1), 59–78.

Çakir, R. (2019). Effect of web-based intelligence tutoring system on students’ achievement and motivation. Malaysian Online Journal of Educational Technology, 7(4), 45–59.

Castaño-Muñoz, J., Duart, J.M., & Sancho-Vinuesa, T. (2014). The Internet in face-to-face higher education. Can interactive learning improve academic achievement? British Journal of Educational Technology, 45(1), 149–159.

Cetin-Dindar, A., Boz, Y., Yildiran Sonmez, D., & Demirci Celep, N. (2018). Development of pre-service chemistry teachers’ technological pedagogical content knowledge’. Chemistry Education Research and Practice, 19, 167–183.

Crowe, R., & Kennedy, J. (2018). Developing student ownership: supporting students to own their learning through the use of strategic learning practices. York: Learning Sciences International.

Dittler, U., & Kreidl, C. (2018). Einleitung. In U. Dittler & C. Kreidl (Eds.), Hochschule der Zukunft—Beiträge zur Zukunftsorientierten Gestaltung von Hochschulen [Universities of the future – Contributions on a future-oriented development of universities] (p. 7–14). Wiesbaden: Springer Fachmedien.

Döbeli Honegger, B. (2016). Mehr als 0 und 1 - Schule in einer digitalisierten Welt [More than 0 and 1 – School in a digitalized world]. Bern: hep Verlag.

Domagk, S., Schwartz, R.N., & Plass, J.L. (2010). Interactivity in multimedia learning: An integrated model. Computers in Human Behavior, 26(5), 1024-1033.

Eilks, I., & Markic, S. (2011). Effects of a long-term participatory action research project on science teachers’ professional development. Eurasia Journal of Mathematics, Science and Technology Education, 7(3), 149–160.

Eilks, I., & Ralle, B. (2002). Participatory action research in chemical education. In B. Ralle & I. Eilks (Eds.), Research in Chemical Education - What does it mean? (pp. 87–98). Aachen: Shaker.

Eilks, I. (2018). Action research in science education: A twenty-year personal perspective. Action Research and Innovation in Science Education, 1(1), 3–14.

Guzey, S. S., & Roehrig, G. H. (2009). Teaching science with technology: Case studies of science teachers’ development of technology, pedagogy, and content knowledge. Contemporary Issues in Technology and Teacher Education, 9(1), 25–45.

Haack, J. (2002). Interaktivität als Kennzeichen von Multimedia und Hypermedia. [Interactivity as a sign for multimedia and hypermedia.] In L. J. Issing & P. Klimsa, (Eds.), Informationen und Lernen mit Multimedia und Internet. Lehrbuch für Studium und Praxis (pp. 126–138). Weinheim: Beltz.

Hernández-Sellés, N., Muñoz-Carril, P.-C., & González-Sanmamed, M. (2019). Computer-supported collaborative learning: An analysis of the relationship between interaction, emotional support and online collaborative tools. Computers & Education, 138, 1–12

Hillmayr, D., Reinhold, F., Ziernwald, L., & Reiss, K. (2017). Digitale Medien im mathematisch-naturwissenschaftlichen Unterricht der Sekundarstufe [Digital media in mathematics and science teaching at the secondary schooling level]. Münster: Waxmann.

Hogarth, S., Bennett, J., Lubben, F., Campbell, B. & Robinson, A. (2006). ICT in science teaching. In Research Evidence in Education Library. EPPI-Centre, Social Science Research Unit, Institute of Education, University of London.

Kalyuga, S., & Sweller, J. (2005). Rapid dynamic assessment of expertise to improve the efficiency of adaptive E-learning. Educational Technology Research and Development, 53, 83–93.

Kerres, M. (2013). Mediendidaktik. Konzeption und Entwicklung mediengestützter Lernangebote [Media education. Concept and development media-supported learning arrangements]. München: Oldenbourg Verlag.

Kultusministerkonferenz (KMK). (2019). Empfehlungen zur Digitalisierung in der Hochschullehre [Suggestions for digitalization of higher education]. https://www.kmk.org/fileadmin/veroeffentlichungen_ beschluesse/2019/2019_03_14-Digitalisierung-Hochschullehre.pdf

Küsel, J., & Markic, S. (2020). Using flipped classroom with digital media for pre-service primary science teacher education. In O. Levrini & G. Tasquier (Eds.), Electronic Proceedings of the ESERA 2019 Conference.

Küsel, J., & Markic, S. (2021). Interaktive Lernmedien in der Ausbildung der Lehrer*innen der Naturwissenschaften [Interactive learning media in the education of science teachers]. k:ON - Kölner Online Journal für Lehrer*innenbildung, 4(2), 158-180.

Küsel, J., Martin, F., Markic, S., Polly, D., & Byker, E. J. (submitted). Investigating pre-Service teachers’ beliefs regarding digital technology.

Küsel, J., Martin, F., & Markic, S. (2020). University students’ readiness for using digital media and online learning - Comparison between Germany and the USA. Education Sciences, 10, 313.

Ma, W., Adesope, O. O., Nesbit, J.C. & Liu, Q. (2014). Intelligent Tutoring Systems and Learning Outcomes: A Meta-Analysis. Journal of Educational Psychology, 106(4), 901–918.

Mamlok-Naaman, R., & Eilks, I. (2012). Action research to promote chemistry teachers’ professional development – Cases and experiences from Israel and Germany. International Journal of Mathematics and Science Education, 10, 581–610.

Maxton-Küchenmeister, J., & Meßinger-Koppelt, J. (2020). Digitale Kompetenzen im naturwissenschaftlichen Lehramtsstudium – eine Einführung [Digital competentcies in science teacher education- an introduction]. In S. Becker, J. Meßinger-Koppelt & C. Thyssen (Eds.), Digitale Basiskompetenzen – Orientierungshilfe und Praxisbeispiele für die universitäre Lehramtsausbildung in den Naturwissenschaften (pp. 4–7). Hamburg: Joachim Herz Stiftung.

Meßinger-Koppelt, J., Schanze, S., & Groß, J. (Eds.) (2017). Lernprozesse mit digitalen Werkzeugen unterstützen – Perspektiven aus der Didaktik naturwissenschaftlicher Fächer [Supporting learning process with digital tools - perspectives from the didactics of science subjects]. Hamburg: Joachim Herz Stiftung Verlag.

Niegemann, H.M. & Heidig, S. (2019). Interaktivität und Adaptivität in multimedialen Lernumgebungen [Interactivity and adaptivity of multimedia learning environments]. In H. M. Niegemann & A. Weinberger, (Eds.), Handbuch Bildungstechnologie: Konzeption und Einsatz digitaler Lernumgebungen (pp. 343–367), Springer.

Nussbaum, M., Alcoholado, C. & Büchi, T. (2015). A comparative analysis of interactive arithmetic learning in the classroom and computer lab. Computers in Human Behavior, 43, 183–188.

Radianti, J., Majchrzak, T. A., Fromm, J., & Wohlgenannt, I. (2020). A systematic review of immersive virtual reality applications for higher education: Design elements, lessons learned, and research agenda, Computers & Education, 147, 103778.

Schmid, U., Goertz, L., Radomski, S., Thom, S. & Behrens, J. (2017). Monitor Digitale Bildung. Die Hochschulen im Digitalen Zeitalter [Monitor digital education. Higher education in the digital age]. Gütersloh: Bertelsmann Stiftung.

Schmidt, P. & Küsel, J. (2021). Adaptive E-Learning-Umgebung zum Thema Löslichkeit und Stofftrennung im naturwissenschaftlichen Sachunterricht der Grundschule [Adaptive e-learning environment ons solubility and separation of matter in primary science education]. k:ON - Kölner Online Journal für Lehrer*innenbildung, 4(2), 296–313.

Schwabl, F., & Vogelsang, C. (2021). CoViD-19 als Katalysator für die digitale Professionalisierung angehender Lehrpersonen? Analysen am Beispiel des Praxissemesters [COVIC 19 as a catalyst for digital professionalization of pre-service teachers? Analysis on the example of an internship semester]. MedienPädagogik: Zeitschrift für Theorie und Praxis der Medienbildung, 40(CoViD-19), 253–281.

Schwarzer, R. & Jerusalem, M. (2002). Das Konzept der Selbstwirksamkeit [The concept of self-efficacy]. Zeitschrift für Pädagogik, 44, 28–53.

Sosa, G. W., Berger, D. E., Saw, A. T., & Mary, J. C. (2011). Effective- ness of computer-assisted instruction in statistics: A meta-analysis. Review of Educational Research, 81(1), 97–128.

Strayer, J. F. (2012). How learning in an inverted classroom influences cooperation, innovation and task orientation. Learning Environments Research, 15, 171–193.

Tulodziecki, G. & Herzig, B. (2004). Mediendidaktik. Medienverwendung in Lehr- und Lernprozessen [Media education. Media use in teaching and learning processes]. Stuttgart: Klett-Cotta.

Vlachopoulos, D. & Makri, A. (2017). The effect of games and simulations on higher education: a systematic literature review. International Journal of Educational Technology in Higher Education, 14, 22.

Westmeyer, H. (2005). Lerntheoretische Ansätze. In H. Weber & T. Rammsayer (Eds.), Handbuch der Persönlichkeitspsychologie und differentiellen Psychologie [Handbook of personality psychology and differetneial psychology] (pp. 81–92). Göttingen Hogrefe.

Wolf, K. (2015). Bildungspotenziale von Erklärvideos und Tutorials auf YouTube: Audio-Visuelle Enzyklopädie, adressatengerechtes Bildungsfernsehen, Lehr-Lern-Strategie oder partizipative Peer Education? [Educational potentials of explaining videos and tutorial on YouTube: Audio-visual encyclopedia address-fitting education television, teaching-learning-strategy and participatory peer education?]. Merz, 59, 1, 30–36.

Xu, D. & Xu, Y. (2019). The promises and limits of online higher education. American Enterprise Institute. https://www.aei.org/research-products/report/the-promises-and-limits-of-online-higher-education/

Downloads

Published

02/21/2024

How to Cite

Küsel, J., & Markic, S. (2024). Participatory Action Research in the Development of Higher Education with Digital Media. Action Research and Innovation in Science Education, 5(1), 7–12. https://doi.org/10.51724/arise.55