Paving the way for curriculum innovation through participatory action research in bilingual chemistry and bilingual biology lessons at German secondary schools: Results from a survey among teachers concerning their material demands
 
More details
Hide details
1
Didaktik der Chemie, Bergische Universität Wuppertal, Germany
CORRESPONDING AUTHOR
Rainer Brunnert   

Didaktik der Chemie, Bergische Universität Wuppertal, Germany
Publication date: 2020-03-16
 
ARiSE 2020;3(1):17–23
KEYWORDS
TOPICS
ABSTRACT
Background:
This paper underlines the ongoing necessity of innovating school chemistry curricula in Germany, while acknowledging that both regular chemistry and CLIL chemistry lessons rely on the same governmental guidelines. In order to achieve curricular innovation successfully, cutting-edge curricular innovation research should be combined with participatory action research (PAR). There is no network of collaborating bilingual chemistry teachers. Therefore, a database of CLIL chemistry in Germany is created and a needs analysis is conducted to identify possible topics serving as starting points for innovation.

Material and methods:
The needs analysis focusing on the teachers’ demands as regards bilingual teaching materials addressed teachers of bilingual chemistry throughout Germany. The questionnaire comprises an open and a closed part. Additionally, CLIL biology teachers from North Rhine-Westphalia were included.

Results:
The research reveals the respondents’ great demand in many key topics in chemistry and/or biology curricula. There is a particular interest in material for photosynthesis/respiration.

Conclusions:
A topical database of bilingual chemistry provision in Germany and bilingual biology provision in NRW was created. The survey helped select one innovative topic. Based on this, teachers will be recruited for PAR. Moreover, the teachers’ answers have reaffirmed current efforts into the development of bilingual chemistry teaching materials.

ACKNOWLEDGEMENTS
The authors would like to thank the Chemical Industry Fund for supporting the project “Photoprocesses in Bilingual Chemistry Education”.
CONFLICT OF INTEREST
The corresponding author states that there is no conflict of interest.
 
REFERENCES (41)
1.
Bohrmann-Linde, C. (2013). Chemie. In Hallet/Königs (pp. 295–302).
 
2.
Bohrmann-Linde, C. (2016). Funktionale Sprachwechsel und Wechsel der Darstellungsform im bilingualen Chemieunterricht. In B. Diehr, A. Preisfeld, & L. Schmelter (Eds.), Bilingualen Unterricht weiterentwickeln und erforschen (pp. 165–182). Frankfurt: Lang.
 
3.
Bohrmann-Linde, C., & Strippel, C. (2018). Sprachliche Interaktionen und sprachsensibler Chemieunterricht. In K. Sommer, J. Wambach-Laicher, & P. Pfeifer (Eds.), Konkrete Fachdidaktik Chemie. (pp. 709–721). Seelze: Friedrich/Aulis.
 
4.
Bonnet, A. (2012). CLIL im Fach Chemie. In B. Diehr & L. Schmelter (Eds.), Bilingualen Unterricht weiterdenken (pp. 201–218). Frankfurt: Lang.
 
5.
Brunnert, R., Bohrmann-Linde, C., Meuter, N., Pereira Vaz, N., Spinnen, S., Yurdanur, Y., & Tausch, M. W. (2018). The fascinating world of photochemistry. Video tutorials for core concepts in science education. Educación Química, 29(3), 108–117. https://doi.org/10.22201/fq.18....
 
6.
Brunnert, R., Yurdanur, Y., & Tausch, M. W. (2019). Towards artificial photosynthesis in science education. World Journal of Chemical Education, 7(2), 33–39. https://doi.org/10.12691/wjce-....
 
7.
Coyle, D., Hood, P., & Marsh, D. (2010). CLIL: Content and language integrated learning. Cambridge: CUP.
 
8.
Diehr, B. (2018). Language, cognition, and culture - a model of the bilingual learner's mental lexicon. In H. Böttger & M. Sambanis (Eds.), Focus on Evidence II (pp. 151–162). Tübingen: Narr.
 
9.
Eilks, I., & Hofstein, A. (2017). Curriculum development in science education. In Taber/Akpan (pp. 169–181).
 
10.
Eilks, I., & Ralle, B. (2002). Participatory action research in chemical education. In Ralle, B., & Eilks, I. (Eds.). (2002). Research in chemical education - What does this mean? (pp. 87–98). Aachen: Shaker.
 
11.
Federal Statistical Office (2011). Population (Census): Länder, reference date, nationality, sex. Result – 12111-0101. https://www-genesis.destatis.d... (23.10.2019).
 
12.
Flint, A. (2011). Chemistry for life – a new way to teach and learn chemistry. In D. Cedere (Ed.), Science and technology education. (pp. 82–86). Riga: U of Latvia.
 
13.
Habekost, A. (Ed.). (2019). Transformation of knowledge in chemistry into didactical experiments [Special issue]. World Journal of Chemical Education, 7(2). http://www.sciepub.com/WJCE/co... (23.10.2019).
 
14.
Hallet, W., & Königs, F. G. (Eds.). (2013). Handbuch bilingualer Unterricht: Content and language integrated learning. Seelze: Klett/Kallmeyer.
 
15.
Heine, L. (2010). Problem solving in a foreign language. A study in content and language integrated learning. Berlin: de Gruyter.
 
16.
ISB (2019). Chemie auf Englisch. http://www.bayern-bilingual.de... (23.10.2019).
 
17.
Krause, M., & Eilks, I. (2019). Using action research to innovate teacher education concerning the use of modern ICT in chemistry classes. Action Research and Innovation in Science Education, 2(1), 15–21. https://doi.org/10.12973/arise....
 
18.
Laudonia, I., Mamlok-Naaman, R., Abels, S., & Eilks, I. (2017). Action research in science education – an analytical review of the literature. Educational Action Research, 26(3). https://doi.org/10.1080/096507....
 
19.
Mamlok-Naaman, R. (2017). Curriculum implementation in science education. In Taber/Akpan (pp. 199–210).
 
20.
Marks, R., & Eilks, I. (2009). Promoting scientific literacy using a sociocritical and problem-oriented approach to chemistry teaching - concept, examples, experiences. International Journal of Environmental & Science Education, 4(3), 231–245.
 
21.
Meyer, O., Coyle, D., Halbach, A., Schuck, K., & Ting, T. (2015). A pluriliteracies approach to content and language integrated learning – mapping learner progressions in knowledge construction and meaning-making. Language, Culture and Curriculum, 28(1), 41–57. https://doi.org/10.1080/079083....
 
22.
Nikula, T. (2016). CLIL: A European Approach to Bilingual Education. In N. van Deusen-Scholl & S. May (Eds.), Second and Foreign Language Education (pp. 1–14). Cham: Springer. https://doi.org/10.1007/978-3-....
 
23.
Ohlberger, S., & Wegner, C. (2019). CLIL modules and their affective impact on students with high English anxiety and low self-efficacy. Apples – Journal of Applied Language Studies, 13(3), 1–15. http://dx.doi.org/10.17011/app....
 
24.
Parchmann, I., Gräsel, C., Baer, A., Nentwig, P., Demuth, R., & Ralle, B. (2006). “Chemie im Kontext”: A symbiotic implementation of a context‐based teaching and learning approach. International Journal of Science Education, 28(9), 1041–1062. https://doi.org/10.1080/095006....
 
25.
Parchmann, I., Schwarzer, S., Wilke, T., Tausch, M. W., & Waitz, T. (2017). Von Innovationen der Chemie zu innovativen Lernanlässen für den Chemieunterricht und darüber hinaus. CHEMKON, 24(4), 161–164. https://doi.org/10.1002/ckon.2....
 
26.
Pérez-Cañado, M. L. (2012). CLIL research in Europe: past, present, and future, International Journal of Bilingual Education and Bilingualism, 15(3), 315-341, DOI: 10.1080/13670050.2011.630064.
 
27.
Prediger, S., Kuzu, T., Schüler-Meyer, A., & Wagner, J. (2019). One mind, two languages – separate conceptualisations? A case study of students’ bilingual modes for dealing with language-related conceptualisations of fractions. Research in Mathematics Education, 21(2), 188-207. DOI: 10.1080/14794802.2019.1602561.
 
28.
Rittersbacher, C. (2007). Zur Eignung der Naturwissenschaften - insbesondere der Chemie - für den bilingualen Unterricht. Fremdsprachen Lehren und Lernen, 36(1), 111–125.
 
29.
Rodenhauser, A., & Preisfeld, A. (2015) Bilingual (German–English) molecular biology courses in an out-of-school lab on a university campus: cognitive and affective evaluation. International Journal of Environmental & Science Education, 10(1), 99-110.
 
30.
Steigert, T. (2012). Schülervorstellungen zum Pflanzenstoffwechsel und die Bedeutung von Experimenten bei der Entwicklung von Konzepten. Hamburg: Kovač.
 
31.
Stuckey, M., Hofstein, A., Mamlok-Naaman, R., & Eilks, I. (2013). The meaning of ‘relevance’ in science education and its implications for the science curriculum. Studies in Science Education, 49(1), 1–34. https://doi.org/10.1080/030572....
 
32.
Taber, K. S. (2013). Three levels of chemistry educational research. Chemistry Education Research & Practice, 14(2), 151–155. https://doi.org/10.1039/c3rp90....
 
33.
Taber, K. S. (2015). Epistemic relevance and learning chemistry in an academic context. In I. Eilks & A. Hofstein (Eds.), Relevant chemistry education: From theory to practice (pp. 79–100). Rotterdam: Sense.
 
34.
Taber, K. S., & Akpan, B. (Eds.). (2017). Science education: An international course companion. Rotterdam: Sense.
 
35.
Tausch, M. W. (2009). Innovationen: In Zeiten von Kerncurricula und PISA. Praxis der Naturwissenschaften - Chemie in der Schule, 58(2), 35–37.
 
36.
Tausch, M. W., & Flint, A. (2017). Chemiedidaktik 2016: Experimentell-konzeptionelle Forschung. Nachrichten aus der Chemie, 65(3), 383–384. https://doi.org/10.1002/nadc.2....
 
37.
Tausch, M. W., Meuter, N., et al. (2019) https://chemiemitlicht.uni-wup... and https://chemiemitlicht.uni-wup... (23.10.2019).
 
38.
Tolsdorf, Y., & Markic, S. (2018). Participatory action research in university chemistry teacher training. Center for Educational Policy Studies Journal, 8(4), 89–108. https://doi.org/10.26529/cepsj....
 
39.
WBGU (2011). World in transition: A social contract for sustainability. Berlin: WBGU.
 
40.
Yurdanur, Y., & Tausch, M. W. (2018). Metamorphoses of an experiment – from hightech UV immersion lamp reactor to low-cost TicTac®‐cell. CHEMKON, 26(3), 125–129. https://doi.org/10.1002/ckon.2....
 
41.
Zydatiß, W. (2012). Linguistic thresholds in the CLIL classroom? The threshold hypothesis revisited. International CLIL Research Journal, 4(1), 17-28.